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Our aim

We want to define a formal framework to model & reason on
such “complex industrial” systems characterized by:

heterogeneous components (esp. both discrete & continuous)

a huge quantity of which are integrated at multiple scales.
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Towards a unified formalism

Dedicated, well-formalized tools exist to design specific
types of systems (physical, software, organizational)

And the underlying approaches to model & design those
various systems have strong similarities at a certain level
of abstraction

In Systems engineering (i.e. the discipline to design complex
industrial systems with heterogeneous parts), architectural
models & methods deal with the “big picture”, but lack
a formal semantics unifying all existing vertical formalisms

→ We propose a unified formalism for these “complex”
systems, by dealing with heterogeneity + multiscale!
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Systems approach is the basis of all specific systems design
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Step of T : 1 minute

This intuitive graphical language allows to describe all systems
with the same concepts: time, data, flow, box, state, behavior.
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How we model systems

A functional machine processing dataflows

Y(t)Q(t)X(t)

with step by step transitions to change state & output at
predefined moments of time characteristic of the system:

Time

x1 x2

y1 y2

q1 q2q0 ...

...

...

Input/Output

Transition

dependencies

Systems can then be integrated together as Lego blocks.

Boris Golden A unified formalism for complex systems architecture 5 / 48



Introduction
Dataflows

Systems
Integration operators

Architecture of systems

Summary of this presentation

1 Dataflows

2 Systems

3 Integration operators

4 Architecture of systems
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Time
Data
Dataflows

1 Dataflows
Time
Data
Dataflows

2 Systems

3 Integration operators

4 Architecture of systems
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Time reference

A time reference is a unified & generic modeling of time:

Definition (Time reference)

A time reference is an infinite set T together with an internal law
+T : T × T → T and a pointed subset (T+, 0T ) satisfying the
following conditions:

upon T+: closure, initiality, left neutrality

upon T : associativity, right neutrality, left cancellation,
linearity

Example

N, R, ∗R (set of nonstandard real numbers containing
infinitesimal, standard & infinite real numbers).
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Good news: time is linear!

Proposition (Total order on a time reference)

We can define a total order �T on T as follows:

a �T b ⇔ ∃c ∈ T+, b = a +T c

Remark: this is a classical result.
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Time scales

Sets of moments of a time reference (later used to define systems,
both discrete & continuous):

Definition (Time scale)

A time scale is any subset T of a time reference T such that:

T has a minimum mT ∈ T such that 0 � mT

∀t ∈ T , Tt+ = {t ′ ∈ T|t ′ � t} has a minimum succT(t)

∀t ∈ T | t � mT, the set Tt− = {t ′ ∈ T|t ′ ≺ t} has a
maximum predT(t)

the axiom of induction is verified on T.
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Expressivity of time scales

Example

A time scale on the time reference R+ can be any subset A such
that: ∀t, t ′ ∈ R+, |A ∩ [t; t + t ′]| is finite.

Example

A regular time scale can be ∗Nτ where τ ∈ ∗R+ is the step,
0 ∈ ∗Nτ and ∀t ∈ ∗Nτ , succ

∗Nτ (t) = t + τ .

Property (unification of discrete & continuous time scales)

In the last example, we can thus define both discrete and
continuous time scales in a unified formalism, depending on
whether τ is infinitesimal or finite!
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Time scales are a good definition of time for systems!

Because time scales:

1 allow recursive definitions (for dataflow transformation)

2 unify discrete & continuous time (e.g. within ∗R)

3 can be mixed together (for systems integration):

Proposition (Finite union of time scales)

A finite union of time scales is still a time scale.
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Datasets

We define the data that will be manipulated by systems. A dataset
is an alphabet of symbols together with a “data behavior”:

Definition (Dataset)

A dataset is a 2-tuple D = (D,B) such that:

D is a set containing a special blank ε

B = (r ,w) where r : D → D and w : D × D → D verify
r(ε) = ε (R1)
r
(
r(d)

)
= r(d) (R2)

r
(
w(d , d ′)

)
= r(d ′) (R3)

w
(
r(d ′), d

)
= d (W 1)

w
(
w(d , d ′), r(d ′)

)
= w(d , d ′) (W 2)
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Data behaviors give a meaningful semantics to data

Example (Persistent data behavior)

In this case, data cannot be consumed by a reading, and every
writing erases the previous data (e.g. what the screen of my phone
displays):

r(d) = d and w( , d) = d

Example (Consumable data behavior)

In this case, data is consumed by a reading, and every writing
(excepted when it is ε) erases the previous data (e.g. my phone
itself as an object):

r(d) = ε and w(d , d ′) =

{
d if d ′ = ε
d ′ else
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Datasets are a good definition of data for systems!

Because we want to handle the following properties of data:

they carry information

they can have different modeling semantics (e.g. persistent
vs consumable) to handle heterogeneity of data

we want to be able to give a consistent synchronization of
data between different time scales
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Dataflows are flows of data at moments of a time scale

Definition (Dataflow)

A dataflow over (D,T) is a mapping X : T→ D. The set of all
dataflows over (D,T) is noted DT.

A dataflow can be observed from any time scale:

Definition (Projection of a dataflow on a time scale)

The projection XTP
of X on TP is the dataflow on (D, TP)

induced (following the data behaviors) by X on TP .

Equivalent dataflows cannot be discriminated by any projection:

Definition (Equivalence of dataflows as far as)

X and Y are equivalent as far as t0 ∈ T (noted X ∼t0 Y ) iif:
∀T ∈ Ts(T ), ∀t ∈ T | t � t0, XT(t) = YT(t)
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Consistency of dataflow projections

Proposition (Equivalence of projection on a finer time scale)

Let X be a dataflow on (D, TX ) and let TP be a time scale such
that TX ⊆ TP . Then:

X ∼ XTP

T
X

T
P

Proposition (Equivalence of projections on nested time scales)

Let X be a dataflow and let T ⊆ TP be two nested time scales.
Then, we have:

(XTP
)T = XT
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Dataflows are a good definition of systemic flows!

Because they have the following properties:

they capture the heterogeneity of time and data

the dataflow equivalence ensures a consistent definition of
systems by preventing modeling artefacts

they will ensure a consistent definition of systems
integration thanks to the ability to project dataflows between
time scales
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1 Dataflows

2 Systems
Definitions
Expressivity

3 Integration operators

4 Architecture of systems
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Representation of a system

X(t) Y(t)Transfer function: F

Transitions

functions

Q(t)

T

Ts
Time shift inside

X(t) 
~

Boris Golden A unified formalism for complex systems architecture 20 / 48



Introduction
Dataflows

Systems
Integration operators

Architecture of systems

Definitions
Expressivity

Definition of a system

Definition (System)

A system is a 7-tuple ∫ = (Ts , Input,Output, S , q0,F ,Q) where

Ts is the time scale of the system

Input = (In, I) and Output = (Out,O) are respectively input
and output datasets

S is the non-empty set of states

q0 is the initial state of the system

F : In × S × Ts → Out is the functional behavior

Q : In × S × Ts → S is the states behavior.

Behavior functions contain Ts for integration consistency.

Inputs can have an instantaneous influence on state & output.
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Step by step execution within time

Definition (Execution of a system)

Let X ∈ InT be an input dataflow for ∫ and X̃ = XTs . The
execution of ∫ on the input dataflow X is the 3-tuple (X ,Q,Y )
where

Q ∈ STs is recursively defined by:

Q(mTs ) = Q
(
X̃ (mTs ), q0,m

Ts
)

∀t ∈ Ts , Q
(
succTs (t)

)
= Q

(
X̃ (succTs (t)),Q(t), succTs (t)

)
Y ∈ OutTs is defined by:

Y (mTs ) = F
(
X̃ (mTs ), q0,m

Ts
)

∀t ∈ Ts , Y
(
succTs (t)

)
= F

(
X̃ (succTs (t)),Q(t), succTs (t)

)
Remark: inputs are read only at the moments of its time scale.
Subtility: the initial state of the system is computed using q0.
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Transfer functions are a semantics of systems execution

Definition (Transfer function)

A function F : InputT → OutputTs is a transfer function of time
scale Ts on signature (Input,Output) if, and only if it is causal:

∀X ,Y ∈ InputT , ∀t ∈ T ,
(
XTs ∼t YTs

)
⇒

(
F (X ) ∼t F (Y )

)
Theorem (Transfer function of a system)

Let ∫ be a system. The couple of dataflows (X,Y) resulting from
all possible executions of ∫ induce a unique transfer function F∫ .

Remark: In practice, transfer functions are extremely difficult to
specify, since they are a function of dataflows themselves. But the
correspondence between systems & transfer functions is key to
prove the consistency of our work.
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Example (Physical system)

Any Hamiltonian system can be modeled as a system in our
framework. E.g. the water tank.

Example (Software system)

We define a Turing machine with inputs and outputs as a system.

Example (Human system)

We can model a human as a system, to define the meaningful
states & behavior at high-level, so that they can be taken into
account during the design (e.g. pilot: alive, asleep, dead).

Expressivity of our model

Our definition of a system can model key real systems types
relevant in systems engineering: physical, software and human.
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3 Integration operators
Composition operators
Abstraction

4 Architecture of systems
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What is integration?

Building multiscale systems from a set of elementary systems
by recursive application of composition and abstraction operators:

Composition (divided in Product and Feedback) consists in
aggregating systems together in an overall greater system
where some inputs and outputs of the various systems have
been interconnected.

Abstraction allows to “zoom out” from a system to define a
more abstract system that can itself be recursively integrated.
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Representation of the extension of a system

X(t) 

T

Y(t)

T's

Q'(t)
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Extension to a finer time scale

The extension operator makes it possible to define a finite number
of systems on a shared time scale.

Definition (Extension of a system)

Let T ∈ Ts(T ) be a time scale such that Ts ⊆ T. The extension
of ∫ to T is the new system

∫ =
(
T, Input,Output, S × In × Out, (q0, ε, ε), F̃T, Q̃T

)
a

aF̃T and Q̃T are technical functions extending F and Q to finer time scales.

Theorem: Equivalence of a system by extension

Let ∫ be a system and ∫ ′ be its extension to a finer time scale.
Then S and S ′ have equivalent transfer functions: F∫ ∼ F∫ ′ .
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Representation of the product of 2 systems

Y''(t)

T

Ts

Time shift inside

X''(t) Q''(t)

Remark: the product on datasets naturally induces the definition of
multiple inputs and outputs.
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Product

Definition (Product of systems)

The product S1 ⊗ · · · ⊗ Sn is the system

Input = Input1 ⊗ · · · ⊗ Inputn (and idem for Output)

S = S1 × · · · × Sn and q0 = (q01, . . . , q0n)

F
(
(x1, . . . , xn), (q1, . . . , qn), t

)
=(

F1(x1, q1, t), . . . ,Fn(x1, q1, t)
)

Q
(
(x1, . . . , xn), (q1, . . . , qn), t

)
=(

Q1(x1, q1, t), . . . ,Qn(x1, q1, t)
)

Theorem: Consistency of the product of systems

The transfer function of the product is equivalent to the usual
product of the transfer functions: F∫1⊗···⊗∫n ∼ F∫1 ⊗ · · · ⊗ F∫n
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Representation of a feedback

X(t) Y(t)

T

Ts
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Feedback (constructive definition)

Definition (Feedback of a system)

When there is no instantaneous influence of dataset D from the
input to the output, the feedback of D in ∫ is the system
∫fb(D) =

(
Ts , (In, I ′), (Out,O′), S , q0,F ′,Q′

)
where

we note dx ,q,t = F
(
(ε, x), q, t

)
D

I ′ is the restriction of I to In, and O′ of O to Out

F ′(x ∈ In, q ∈ S , t) = F
(
(dx ,q,t , x), q, t

)
Out

Q′(x ∈ In, q ∈ S , t) = Q
(
(dx ,q,t , x), q, t

)
Theorem: Consistency of the feedback on systems

The transfer function of the feedback of a system equals the usual
feedback of the transfer function of this system: F∫fb(D)

= fb(F∫ ,D)
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Sequential composition from product and feedback

Any sequential composition of n systems can be easily obtained
from a finite sequence of product and feedback operators:

~~

Boris Golden A unified formalism for complex systems architecture 33 / 48



Introduction
Dataflows

Systems
Integration operators

Architecture of systems

Composition operators
Abstraction

Modeling nondeterministic systems with an oracle

Example (Abstraction can bring nondeterminism to a model)

A glass with solidity s ∈ {0, . . . , 100}, where s decrease at each
impact i “becomes” nondeterministic (in reaction to i) when
described as broken for s = 0 and OK for s ∈ {1, . . . , 100}.

X(t) Y(t)

Q(t)

T

Ts
Time shift inside

X(t) 
~

Events
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Representation of the abstraction operator

T

Abstract transfer function F'

Y'(t)X'(t)

C A

Remark: the abstraction is a “zoom out” of datasets (considering
higher level datas for inputs, outputs and states, and eventually
merging different dataflows), time (considering intervals of time
instead of moments) and thus overall behavior.
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Abstraction of a system

Definition (Abstraction of a system)

Let ∫ =
(
Ts , Input,Output,S , q0,F ,Q

)
be a system.

∫ ′ =
(
Ta, Inputa ⊗ E ,Outputa,Sa, qa0,Fa,Qa

)
is an abstraction

of ∫ for input and output abstractions (Ai ,Ao) iif:

∃Aq : STs → Sa
Ta , forall execution (X ,Q,Y ) of ∫ , ∃E ∈ ETa ,(

Ai (XTs )⊗ E ,Aq(Q),Ao(Y )
)

is an execution of ∫ ′.

Conversely, ∫ ′ is a concretization of the system ∫ .

Theorem: Consistency of the abstraction of a system

The transfer function of an abstraction of a system equals the
corresponding abstraction of the transfer function of this system.
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These operators are good to model systems integration!

They encompass key integration operators: composition &
abstraction

It ensures a consistent integration of heterogeneous
systems

It makes it possible to recursively integrate systems since
our definition of systems is closed under those operators.
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2 Systems

3 Integration operators

4 Architecture of systems
Handling underspecification
Modeling recursive structure
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Definition (Systemic signature)

A systemic signature is a 4-tuple (X ,Y ,Q,T) where X , Y and
Q are datasets (respectively called input values, output values and
states) and T is a time scale.

Definition (Requirement)

A requirement on (X ,Y ,Q,T), is a logical formula (e.g. using
temporal logics) expressing properties on the behavior of any
system of systemic signature (X ,Y ,Q,T). The set of all possible
requirements on this systemic signature is noted Req(X ,Y ,Q,T).

Example (Expected property on the behavior of a system)

The system can be expected to be “alive”, meaning here that a
non blank input read at instant t must instantly result in a non
blank output or a modification of the internal state.

Boris Golden A unified formalism for complex systems architecture 39 / 48



Introduction
Dataflows

Systems
Integration operators

Architecture of systems

Handling underspecification
Modeling recursive structure

An underspecified system

Definition (Box)

A box is a 5-uplet (X ,Y ,Q,T, r) where:

(X ,Y ,Q,T) is a systemic signature

r ∈ Req(X ,Y ,Q,T)

We note BB(X ,Y ,Q,T) the set of boxes on (X ,Y ,Q,T).

YQX

T

r
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A box induces a set of corresponding systems

Definition (Realization of a box)

Let B = (X ,Y ,Q,T, r) be a box. A realization of B is any
system S of systemic signature (X ,Y ,Q,T) such that S � r .
When such a system exists, B is said to be realizable.

X(t) Y(t)

Q(t)

T

r
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These are good definitions to handle underspecification!

We can now deal with underspecification:

a systemic signature only specifies the systemic variables

a box specifies the variables & behavior constraints

a system is the algorithmic specification of a box.
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Views define nested boxes in a consistent way

Definition (View)

A view is a pair
(
B, (B0, . . . ,Bn−1,C )

)
:

B is a box

(B0, . . . ,Bn−1,C ) is a refinement of B.

A view can be realized by a consistent (n+1)-tuple of systems.

B
0

B
1

B
2

B

r
0

r
1

r
2

r
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Multiscale systems are the realization of multiscale views

Definition (Multiscale system)

A multiscale system is a tree where:

all leaves are labelled with a system

internal nodes with an even depth are labelled with a pair
(S ,C ), where S is a system and C is a composition plan

internal nodes with an odd depth are labelled with a pair
(S , α), where S is a system and α is an abstraction function

for each even node (S ,C ) of children (S0, ), . . . , (Sn−1, ); we
have: S = C (S0, . . . ,Sn−1)

for each odd node (S , α), its unique child (S ′, ) is such that:
S = α(S ′).
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Multiscale systems = systems with an internal structure!

α
1

α
2

X(t) Y(t)

Q(t)

T

X1(t) Y1(t)

Q1(t)

T

X2(t) Y2(t)

Q2(t)

T

Y (t)

T

1 2

1c

1c

Q (t)
1c

X (t)
1c

Y (t)

T2c

2c

Q (t)
2c

X (t)
2c

X3(t) Y3(t)

Q3(t)

T

X4(t) Y4(t)

Q4(t)

T
2c

2c

3 4
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Synthesis of our architecture framework

Heterogeneous dataflows
Time = time reference + time scale
Data = dataset + data behavior
Dataflow = time + data

Systems
System = functional behavior + state behavior + time scale
Transfer function = causal transformation of dataflows
Execution of a system = transfer function

Integration of systems
Composition = extension + product + feedback
Abstraction = change of systemic level + nondeterminism
Integration operators = composition + abstraction

Architecture
Box = signature + requirement
View = box + structure
Multiscale system = system + structure
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Whole manuscript published in 4 articles

Chapters 2, 3, 4: A minimalist and unified semantics for
heterogeneous integrated systems in Applied Mathematics
and Computation (Elsevier), 2012

Chapter 5: An adequate logic for heterogeneous systems
at the 18th IEEE International Conference on Engineering of
Complex Computer Systems (ICECCS 2013).

Chapter 6: A minimalist formal framework for systems
architecting at the 3rd International Workshop on Model
Based Safety Assessment (IWMBSA’2013)

Chapter 7: Infinite order Lorenz dominance for fair
multiagent optimization at the International Conference
Autonomous Agents and Multi-Agent Systems 2010.
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Some perspectives to continue this work

Confronting this formalism to real industrial cases

Correctness-by-construction (bottom-up preservation of
properties)

Formalizing the link with synchronous languages (e.g.
Lustre, Simulink)

Integrating events in our definition of system (e.g. Altarica).
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