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ABSTRACT
This paper deals with fair assignment problems in decision
contexts involving multiple agents. In such problems, each
agent has its own evaluation of costs and we want to find a
fair compromise solution between individual point of views.
Lorenz dominance is a standard decision model used in Eco-
nomics to refine Pareto dominance while favoring solutions
that fairly share happiness among agents. In order to en-
hance the discrimination possibilities offered by Lorenz dom-
inance, we introduce here a new model called infinite order
Lorenz dominance. We establish a representation result for
this model using an ordered weighted average with decreas-
ing weights. Hence we exhibit some properties of infinite or-
der Lorenz dominance that explain how fairness is achieved
in the aggregation of individual preferences. Then we ex-
plain how to solve fair assignment problems of m items to
n agents, using infinite order Lorenz dominance and other
models used for measuring inequalities. We show that this
problem can be reformulated as a 0-1 non-linear optimiza-
tion problems that can be solved, after a linearization step,
by standard LP solvers. We provide numerical results show-
ing the efficiency of the proposed approach on various in-
stances of the paper assignment problem.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Economics; I.2.11
[Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent Systems; G.1.5 [Numerical Analysis]: Opti-
mization—integer programming, linear programming

General Terms
Algorithms, Economics

Keywords
Multiagent optimization, Fairness

1. INTRODUCTION
Fairness of decision procedures is often considered as an

important issue in decision problems involving multiple agents.
Although not always formalized precisely, this normative
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principle generally refers to the idea of favoring solutions
that fairly share happiness or dissatisfaction among agents.
More formally, when comparing two cost vectors x and y
(one component by agent), claiming that “x is more fair
than y” bears to the vague notion that the components of x
are “less spread out” or “more nearly equal” than the com-
ponents of y are. This intuitive notion leaves room for many
different definitions. The field has been explored by math-
ematicians who developed a formal theory of majorization
[10] and by economists who studied the axiomatic founda-
tions of inequality measures (for a synthesis see [11, 15]).

This body of knowledge has now a significant impact in
computer sciences where many optimization problems re-
quire to incorporate the idea of fairness or equity in the def-
inition of objectives. Let us mention for example multiagent
job-shop scheduling problems, knapsack sharing problems,
equitable approaches to location problems [12], fair band-
width assignment, or any other resource allocation problem.
This is also the case in the field of Artificial Intelligence
where the notions of fairness and envy-freeness appear in
various multiagent problems such as fair division of indivis-
ible goods and combinatorial auctions [2, 3], paper assign-
ment problems [7], marriage problems in social networks [6].

Example 1. Let us consider a simple fair division prob-
lem where 5 items must be assigned to 5 agents. Every item
is assigned to exactly one agent and each agent is assigned
exactly one item. We want to find an assignment that fairly
shares costs between agents, the costs being given by the fol-
lowing matrix of general term cij representing the cost of
assigning item j to agent i:

C =


5 8 (4) 9 7
1 (3) 2 7 8

(3) 9 2 9 5
10 1 3 (3) 4
5 1 7 7 (3)


Any solution to this problem is a permutation that can
be characterized by a square matrix Z of size 5 contain-
ing boolean variables zij where zij = 1 if and only if item
j is assigned to agent i, Z having exactly one 1 in each
row and column. To solve this multiagent assignment prob-
lem using standard optimization techniques, we could be
interested in minimizing the average level of dissatisfaction
among individuals, or equivalently the sum of individual dis-
satisfactions where the dissatisfaction of agent i is defined by
xi =

∑
j cijzij . This amounts to minimizing the linear func-

tion
∑
i

∑
j cijzij , a classical matching problem which can

be solved in polytime with the Hungarian method. Here



the optimal solution is given by setting to 1 variables zij
corresponding to costs cij in bold in the C matrix. The as-
sociated dissatisfaction vector is given by (7, 1, 2, 3, 1) which
yields 14 as overall cost. However, this solution does not
seem very fair. Although the average cost is below 3, one
agent receives 7 whereas another gets 1.

If we consider now another permutation given by num-
bers into brackets in the cost matrix, we get a much prefer-
able dissatisfaction profile regarding equity. For a slightly
higher overall cost (16), we indeed obtain a significantly bet-
ter balanced dissatisfaction profile: (4, 3, 3, 3, 3). This solu-
tion actually minimizes the dissatisfaction of the least satis-
fied agent (min-max criterion) and the solution is here fully
satisfactory. However, focusing on the least satisfied agent
is not always convenient. It provides a pessimistic view on
agents’ satisfactions; moreover it is not very discriminating
since multiple solutions remain equivalent from a worst case
analysis point of view, even if they offer different perspec-
tives to all but the least satisfy agent. The worst case can
even mask very different situations as shown by this second
example:

Example 2. We consider an assignment problem with
the following cost matrix:

C′ =


9 10 (9) 9 10
1 (4) 2 7 8

(4) 9 2 9 5
10 1 3 (2) 4
5 1 7 7 (4)


Here, the optimal solution obtained with respect to the

min-max criterion is given by numbers into brackets in the
matrix. The associated dissatisfaction vector is (9, 4, 4, 2, 4).
However, in this case, the min-max solution might not be the
best one. We could prefer sacrificing the least satisfied agent
(who is apparently difficult to satisfy) so as to get better costs
for the other agents. Hence vector (10, 1, 2, 2, 1) that derives
from positions in bold in matrix C′ should be preferred to the
previous one.

These examples show that simple objectives like min-sum
or min-max are not perfectly suited to fair optimization
problems. In this paper we propose a more sophisticated
model that attaches more importance to least satisfied agents
without forgetting the other agents. It is based on an exten-
sion of a partial dominance concept known as Lorenz Domi-
nance in Social Choice Theory and used for the measurement
of inequalities. Our aim in this paper is to introduce this
model and its main properties, and then elaborate a compu-
tationally efficient procedure using this model to generate
fair solutions in multiagent assignment problems. For ap-
plication purpose, we will consider one to one assignment
problems as in Examples 1 and 2, but also many to many
assignment problems such as conference paper assignment
problems. The multiagent problems discussed in this pa-
per concern the case of centralized information. We assume
that a central authority is responsible of computations and
assignment of items. This is the case in various auctions
problems and in conference paper assignment problems. It
would also be interesting to study similar problems in decen-
tralized contexts where the final assignment emerges from a
sequence of local decisions of uncoordinate agents having
only a partial view on the problem [3, 8]. Such problems are
beyond the scope of this paper.

The paper is organized as follows: in Section 2 we recall
some basic concepts used in Social Choice theory for the
measurement of inequalities. In order to minimize agents’
dissatisfaction while preserving fairness in assignment, we
introduce the notion of infinite order Lorenz dominance as a
refinement of Pareto and Lorenz dominance concepts. Then
we establish a representation result for infinite order Lorenz
dominance in Section 3, and we present some axiomatic
properties of this model. The use of this model in multi-
agent assignment problems in presented in Section 4. In
particular we formulate such problems as non-linear 0-1 op-
timization problems, we study the problem complexity and
present an approach to solve it using mixed integer linear
programming. Finally numerical results showing the effi-
ciency of our approach on randomly generated instances are
presented, including a model of the paper assignment prob-
lem solved for realistic sizes.

2. INEQUALITY MEASUREMENT WITH
LORENZ DOMINANCE RELATIONS

2.1 Notations and Definitions
Considering a finite set of agents N = {1, . . . , n}, any

solution of a multiagent combinatorial problem can be char-
acterized by a cost vector x = (x1, . . . , xn) in Rn+ whose
ith component represents the cost of solution x with respect
to agent i. Hence, the comparison of solutions reduces to
the comparison of their cost vectors. In this framework, the
following definitions are useful:

Definition 1. The Weak-Pareto dominance relation on
cost vectors of Rn+ is defined, for all x, y ∈ Rn+ by:

x -P y ⇐⇒ [∀i ∈ N, xi ≤ yi)]
The Pareto dominance relation (P-dominance for short) on
cost vectors of Rn+ is defined as the asymmetric part of -P :

x ≺P y ⇐⇒ [x -P y and not(y -P x)]

Remark that x ≺P y means that x is preferred to y (x is less
costly than y) since x and y are cost vectors representing
individuals’ dissatisfactions. Within a set X we say that x
is P-dominated when y ≺P x for some y in X, and P-non-
dominated when there is no y in X such that y ≺P x.

In order to decide whether a solution is better than an-
other, we have to define a transitive preference relation - on
cost vectors such that x - y when cost vector x is preferred
to cost vector y. Let us introduce now the minimal require-
ments that such a relation - should satisfy to be seen as a
reasonable synthesis of agents’ opinions, favoring both effi-
ciency and equity in comparisons. Firstly, we assume that
all agents have the same importance. Hence, the following
axiom formalizes the fact that all agents are treated equiv-
alently:

Symmetry. For all x ∈ Rn+, for any permutation π of
{1, . . . , n}, (xπ(1), . . . , xπ(n)) ∼ (x1, . . . , xn), where ∼ is the
indifference relation defined as the symmetric part of -.

In relation - we both want to capture the ideas of fairness
and efficiency in cost-minimization. For this reason, - is
expected to satisfy the following axioms:

P-Monotonicity. For all x, y ∈ Rn+, x -P y ⇒ x - y and
x ≺P y ⇒ x ≺ y,



where � is the strict preference relation defined as the asym-
metric part of -. P-monotonicity is a natural unanimity
principle enforcing consistency with P-dominance.

Now the idea of fairness in comparisons is based on the
following transfer principle:

Transfer Principle. Let x ∈ Rn+ such that xi > xj for
some i, j. Then for all ε such that 0 < ε < xi − xj ,
x − εei + εej ≺ x where ei (resp. ej) is the vector whose
ith (resp. jth) component equals 1, all others being null.

This axiom captures the idea of fairness as follows: if xi > xj
for some cost vector x ∈ Rn+, slightly improving (here de-
creasing) component xi to the detriment of xj while pre-
serving the mean of the costs would produce a better dis-
tribution of costs and consequently improve the overall cost
of the solution for the collection of agents. For example if
y = (9, 10, 9, 10) and x = (11, 10, 7, 10) then the transfer
principle implies y ≺ x. Vector y is preferred because there
exists a transfer of size ε = 2 to pass from x to y. Note
that using a similar transfer of size greater than 11 - 7 =
4 would increase inequality in terms of costs. This explains
why the transfers must have a size ε < xi − xj . Such trans-
fers are said to be admissible in the sequel. They are known
as Pigou-Dalton transfers in Social Choice Theory, where
they are used to reduce inequality of income distributions
over a population (see [15] for a survey).

Note that the transfer principle possibly provides argu-
ments to discriminate between vectors having the same av-
erage cost but does not apply in the comparison of vec-
tors having different average costs. Hopefully, the possibility
of discriminating is improved when combining the Transfer
Principle with P-monotonocity. For example, to compare
w = (8, 10, 9, 10) and z = (11, 10, 7, 12) we can use vec-
tors x and y introduced above and observe that w ≺ y (P-
Monotonicity), y ≺ x (Tranfer Principle explained above)
and x ≺ z (P-Monotonicity). Hence w ≺ z by transitiv-
ity. In order to better characterize those vectors that can be
compared using combinations of P-monotonicity and Trans-
fer Principle we recall the definition of Generalized Lorenz
vector and related concepts :

Definition 2. For all x ∈ Rn+, the Generalized Lorenz
Vector associated to x is the vector:

L(x) = (x(1), x(1) + x(2), . . . , x(1) + x(2) + . . .+ x(n))

where x(1) ≥ x(2) ≥ . . . ≥ x(n) represents the components of

x sorted by decreasing order. The jth component of L(x) is

Lj(x) =
∑j
i=1 x(i).

Definition 3. The Generalized Lorenz dominance rela-
tion (L-dominance for short) on Rn+ is defined by:

∀x, y ∈ Rn+, x -L y ⇐⇒ L(x) -P L(y)

Within a set X, element x is said to be L-dominated when
y ≺L x for some y in X, and L-non-dominated when there
is no y in X such that y ≺L x.

The notion of Lorenz dominance was initially introduced
to compare vectors with the same average cost and its link to
the transfer principle was established by Hardy, LittleHood
and Polya [10]. The generalized version of L-dominance con-
sidered here is a classical extension allowing vectors with
different averages to be compared (see [16]). In order to es-
tablish the link between Generalized Lorenz dominance and

preferences satisfying combination of P-Monotonocity, Sym-
metry and Transfer Principle we recall a result of Chong [4]
(see also [10] and [16]):

Theorem 1. For any pair of distinct vectors x, y ∈ Rn+,
if x ≺P y, or if x obtains from y by a Pigou-Dalton transfer,
then x ≺L y. Conversely, if x ≺L y, then there exists a se-
quence of admissible transfers and/or Pareto-improvements
to transform y into x.

For example we have: L(w) = (10, 20, 29, 37) ≺P L(z) =
(12, 23, 33, 40) which directly proves the existence of a se-
quence of Pareto improvements and/or admissible transfers
passing from z to w. This theorem establishes L-dominance
as the minimal transitive relation (with respect to set inclu-
sion) satisfying simultaneously P-Monotonicity, Symmetry
and the Transfer Principle. Hence, the subset of L-non-
dominated elements defines the best candidates to optimal-
ity in fair optimization problems.

Due to P-monotonicity, the set of L-non-dominated el-
ements is included in the set of Pareto optimal vectors.
Unfortunately, in multi-objective combinatorial optimiza-
tion problems, the set of L-non-dominated solutions can be
huge (see [14]). This problems occurs also in multiagent
assignment problems. As we will see later in Example 5,
there exists family of instances where the number of L-non-
dominated cost vectors grows exponentially with the size of
the problem. This is the reason why we introduce in the
next section more discriminating dominance concepts that
extend L-dominance to richer preference structures.

Other attempts in this direction have been proposed in
Social Choice Theory. The most common way is resorting to
a Schur-convex function ψ to construct a weak-order defined
by x - y ⇔ ψ(x) ≤ ψ(y). A Schur-convex function (also
known as order-preserving function) is a function ψ : Rn →
R such that ∀x, y ∈ Rn, x -L y =⇒ ψ(x) ≤ ψ(y). For
example, every function that is convex and symmetric is
also Schur-convex. Well known examples of such functions
are S-Gini indices and more generally instances of Yaari’s
model [18] of the following form:

Example 3. The Yaari’s Social Welfare Functions of the
following form are Schur-convex:

Wf (x) =

n∑
i=1

[
f

(
n− i+ 1

n

)
− f

(
n− i
n

)]
x(i) (1)

where f is a strictly increasing continuous function such that
f(0) = 0 and f(1) = 1. S-Gini indices are particular in-
stances obtained for f(z) = zδ, δ > 1, see [5].

There are other ways of refining Lorenz dominance. We
can import some ideas from the literature on Decision Mak-
ing under risk, where people are interested in comparing
probability distributions in terms of risk. In this context,
the counterpart of Lorenz dominance is the second-order
stochastic dominance (SSD for short) that defines a partial
order on probability distributions. The SSD model does not
permit to compare any pair of distributions, but it can be re-
fined by stochastic dominances of higher orders, each of them
refining the previous one. The ultimate result of this pro-
cess is named infinite order stochastic dominance (see [9]).
The next subsection proposes the construction of progressive
refinements of L-dominance using similar mechanisms.



2.2 Infinite Order Lorenz Dominance
Refinement of Lorenz dominance can be obtained by it-

erating L(.) transformation so as to define higher order L-
dominance relations. Observing indeed that P-monotonicity
holds for L-dominance (see Theorem 1), L-dominance ap-
pears as a refinement of Pareto dominance. Whenever x
and y cannot be compared in terms of P-dominance we
compare instead L(x) and L(y). If no Pareto dominance
holds, the indetermination might be solved by comparing
L2(x) = L(L(x)) and L2(y) = L(L(y)). This process can be
iterated mechanically to higher levels with the aim of reduc-
ing incomparability. This leads to consider kth order Lorenz
vector Lk(x) defined by:

Lk(x) =

{
x if k = 0
L(Lk−1(x)) if k > 1

and the kth order Lorenz dominance defined by:

∀x, y ∈ Rn+, x -kL y ⇐⇒ Lk(x) -P L
k(y)

Then we define strict infinite order dominance (strict L∞-
dominance for short) as follows1:

≺∞L =
⋃
k≥1

≺kL

Note that, ≺0
L and ≺1

L correspond to P-dominance and L-
dominance respectively. Then, due to P-monotonicity, x ≺kL
y ⇒ x ≺k+1

L y for any k and relations ≺kL form a nested
sequence of strict partial orders. This suggests that ≺∞L
might be computed, for any pair x, y ∈ Rn+ by Algorithm 1
given below:

Algorithm 1: Testing strict L∞-dominance
u← x;
v ← y;
while [not(u ≺P v or v ≺P u)] do

u← L(u);
v ← L(v);

end
if (u ≺P v) then x ≺∞L y;
if (v ≺P u) then y ≺∞L x

For example, consider a 4 agents problem with 3 Pareto
optimal feasible vectors x = (3, 2, 3, 2), y = (3, 3, 3, 0) and
z = (1, 3, 2, 4). We have L(x) = (3, 6, 8, 10), L(y) = (3, 6, 9, 9)
and L(z) = (4, 7, 9, 10). Hence we get x ≺∞L z and y ≺∞L z.
We need to go one step ahead to compare x and y. We get
L2(x) = (10, 18, 24, 27) and L2(y) = (9, 18, 24, 27), therefore
y ≺∞L x.

Note that our definition of infinite order Lorenz domi-
nance assumes that the vectors to be compared are cost
vectors. It does not fit for utility vectors. A simple way
of adapting our approach to compare two utility vectors
(u1, . . . , un) and (v1, . . . , vn) according to infinite order dom-
inance is to check whether (M − u1, . . . ,M − un) ≺∞L (M −
v1, . . . ,M − vn) for an arbitrary M chosen greater than all

1Although L-dominance can be seen as a particular instance
of second order stochastic dominance (assuming a uniform
probability distribution on agents), the notion of infinite or-
der Lorenz dominance we introduce here must not be con-
fused with infinite order stochastic dominance that results
from a different construction.

ui and vi, i = 1, . . . , n. This adaptation is consistent with
the definition of ≺∞L for cost vectors and does not depend
on the choice of M .

Algorithm 1 tries to discriminate between vectors that
were not discriminated by Lorenz dominance. However,
nothing proves that the algorithm terminates for all pairs of
vectors. Moreover the mechanical iteration of Lorenz domi-
nance used to introduce the model is not easy to manipulate
when we study the properties of the model. We need another
characterization of ≺∞L to be able to propose a fully oper-
ational decision procedure and to be able to better under-
stand the role of each agent in the decision process. For this
reason, in the following section, we characterize the vectors
that can be discriminated by Algorithm 1. We also provide a
direct mathematical definition of strict L∞-dominance mak-
ing it possible to compare any pair of vectors in O(n log(n)).

3. SOME PROPERTIES OF INFINITE OR-
DER LORENZ DOMINANCE

3.1 A Representation Theorem
In this section, we establish a representation result for

strict L∞-dominance. We present an algebraic reformula-
tion of Lorenz vectors and establish technical lemmas; the
main result will follow immediately.

For x ∈ Rn+, we define x↑ as the vector resulting from
sorting the components of x in increasing order, that is: x↑ =
(x(n+1−i))i=1...n since we have defined (.) as the permutation
sorting the components of x in decreasing order. As the
definition of L(.) respects the Symmetry Axiom, we have:
L(x↑) = L(x). We now introduce the n× n matrix:

L =


0 · · · 0 1
... . . . . . . ...
0 . . . 1
1 · · · · · · 1


defined by: lij = 1 if i+ j > n, 0 otherwise.

Proposition 1. For x ∈ Rn+, ∀k, Lk(x) = Lk.x↑

Schetch of the proof. For a vector y whose components
are sorted in increasing order, it is immediate to verify that
L(y) (the Lorenz vector of y) is equal to L.y (product of the
matrix L and the vector y). Therefore, for any vector x, we
have: L(x) = L(x↑) = L.x↑. As L(x) is a vector whose com-
ponents are sorted in increasing order, the equality holds at
any order: ∀k, Lk(x) = Lk.x↑ 2

L being a symmetric real matrix, the finite-dimensional
spectral theorem applies and we can find P , an orthogo-
nal matrix (such that tP = P−1) and n real eigenvalues
λ1 . . . λn (duplicated according to their multiplicity, with
|λ1| ≥ |λ2| ≥ ... ≥ |λn|) such that: L= tP Diag(λ1 . . . λn) P
and therefore Lk = tP Diag(λk1 . . . λ

k
n) P , Diag(a1 . . . an)

being the diagonal matrix of elements a1, a2, ..., an.
Let w = π

2n+1
:

Lemma 1. The n eigenvalues of L are λk = (−1)k+1

2 sin
(

(2k−1)w
2

)
for k ∈ [1;n], with eigenvectors Vk =

(
sin
(
i(2k−1)w

))
i=1...n

Schetch of the proof. We introduce A = 2 Id−L−2, which is
classical to diagonalize (L−2 is the square of the inverse ma-
trix of L). The n eigenvalues of A are 2 cos((2k− 1)w), k =



1 . . . n, with eigenvectors
(

sin
(
i(2k − 1)w

))
i=1...n

. These

n eigenvalues of A are in (0, 2) and have different absolute
values. Using the relation between A and L, we are able to
determine the eigenvalues of L and its eigenvectors. 2

Decomposing Lk into n lines Lk1 . . .Lkn, we have:

x -kL y ⇔ Lk.x↑ -P Lk.y↑ ⇔


Lk1 .x↑ ≤ Lk1 .y↑

...
Lkn.x↑ ≤ Lkn.y↑

Thus, the kth order Lorenz dominance can be rewritten
as the intersection of n orders. To determinate ≺∞L , we will
express these n orders and prove that they are equivalent
when k →∞, and that this equivalent admits a limit when
k → ∞, limit that can be rewritten as the strict order in-
duced by an OWA function.

Definition 4. OWA means ordered weighted average. It
is a family of aggregators introduced by Yager [19] character-
ized by W (x) =

∑n
k=1 wkx(k). W is a symmetric function of

its arguments. The weights wk do not represent the impor-
tance of agents but the attention we pay to agents depending
on their rank in the satisfaction order.

Let Ei be the square matrix of dimension n with all values
to 0, excepted a 1 in position (i, i). Let Pi be the ith line of
matrix P and Ai = tPiPi. We have:

Lk = tP

(
n∑
i=1

λkiEi

)
P =

n∑
i=1

λki (tPiPi) =

n∑
i=1

λkiAi

Lemma 2. For x ∈ Rn+, Lk(x) ∼ λk1
tP1 ×W(x) where

W is the OWA function whose weights are the components
of P1 in reverse order and ∼ is the relation of asymptotical
equivalence.

Proof. By Lemma 1 giving the eigenvalues of L, we have
|λ1| > |λ2| > ... > |λn|. Moreover, the eigenvector as-
sociated to the greatest eigenvalue λ1 being V1 =t P1 =(

sin(iw)
)
i=1...n

> 0, we have tP1P1 > 0 and therefore,

when k → +∞, we have (since for 1 < i ≤ n, λki = o(λk1)
when k → +∞) : Lk ∼ λk1

tP1P1 so that we can write:
Lk(x) ∼ λk1

tP1(P1.x
↑). P1.x

↑ is a weighted average of the
components of the increasing vector x↑. It can be rewritten
as an OWA on x, since if we defineW as the OWA criterion
whose weights are the components of P1 in reverse order,
we have: W(x) =

∑n
i=1(P1)n+1−i x(i) = P1.x

↑. We finally
obtain the following equivalent of the iteration of Lorenz
dominance when k →∞ : Lk(x) ∼ λk1 tP1 ×W(x)

Lemma 3. For x, y ∈ Rn+, W(x) <W(y)⇒ x ≺∞L y.

Proof. IfW(x) <W(y), then, as Lk(x) ∼ λk1 tP1×W(x)
(by Lemma 2), we have for k sufficently large: Lk(x) �P
Lk(y), so x �kL y, and therefore x ≺∞L y.

Lemma 4. For x, y ∈ Rn+, if W(x) = W(y), then x and
y are incomparable by ≺∞L .

Proof. The equivalent of Lk(x) of Lemma 2 cannot dis-
criminate between two vectors x and y whenW(x) =W(y).
We need to use the other eigenvalues of L to try to discrim-
inate between these two vectors. As W(x) = W(y), we can
write, according to the result of Proposition 1:

Lk(y)− Lk(x) =

n∑
i=2

λki
tPiPi(y

↑ − x↑)

If for all j, Pj(y
↑−x↑) = 0, then P (y↑−x↑) = 0 and x↑ = y↑

(P being an invertible matrix), and therefore there is no
strict ≺∞L -dominance between x and y, since L(x) = L(y),
and they are incomparable by ≺∞L .

Else, let j be the first index such that Pj(y
↑−x↑) 6= 0. As

tPP = Id, for i > 1, tP1Pi = 0. But since Pi 6= 0 (P being
an invertible matrix) and P1 > 0, Pi must have a component
i1 strictly positive and another i2 strictly negative to verify
tP1Pi = 0. But we have, for any component i:

Lki (y)− Lki (x) ∼ λkj t(Pj)i(Pj(y
↑ − x↑))

so for k sufficiently large, the component i1 of Lk(y) −
Lk(x) is strictly positive and i2 stricly negative; thus �kL-
dominance cannot hold and x and y are incomparable by
≺∞L .

We are now in position to formulate our main result:

Theorem 2. The strict L∞-dominance has a direct nu-
merical representation using the following ordered weighted
average:

W(x) =

n∑
k=1

sin

(
(n+ 1− k)π

2n+ 1

)
x(k)

This representation is given by the following property:

∀x, y ∈ Rn+, x ≺∞L y ⇐⇒ W(x) <W(y)

Proof. ⇒ : if x ≺∞L y, then x and y are not incom-
parable by ≺∞L . Therefore, the contrapositive of Lemma 4
insures thatW(x) 6=W(y). But then, as x ≺∞L y, we cannot
have W(x) >W(y) (since Lemma 3 would apply and imply
that y ≺∞L x). We finally must have W(x) <W(y).
⇐ : the proof is straightforward by Lemma 3.

Actually, to compare two vectors x and y according to
strict L∞-dominance, we do not need to run Algorithm 1.
We compute instead W(x) and W(y) in O(n log(n)). If
W(x) 6= W(y), the vector having the smallest score by W
strictly L∞-dominates the other. Hence, Algorithm 1 would
stop after a sufficiently large number of iterations. When-
ever W(x) =W(y), no strict dominance holds at any order
of the iteration of Lorenz dominance. This shows that Algo-
rithm 1 would never terminate in this case. This illustrates
the meaning and utility of our representation result.

The last remark deals with vectors incomparable by strict
L∞-dominance: the relation “is incomparable with” is a re-
lation of equivalence (since it means having the same value
by function W). Therefore, it is natural to extend the strict
L∞-dominance to a weak order as follows:

Definition 5. The L∞-dominance is a weak order ex-
tending strict L∞-dominance as follows:

∀x, y ∈ Rn+, x -∞L y ⇐⇒ W(x) ≤ W(y)

This numerical representation of L∞-dominance is very
helpful to analyze the axiomatic properties of the model.
The fact that W(x) is an ordered weighted average (OWA)
with positive and strictly decreasing weights wk as k in-
creases makes sense. It means that all agents play a role
in the evaluation of solutions but, when evaluating a given



solution, we attach more importance to least satisfied agents.
This is in accordance with the intuitive idea of fairness pre-
sented in the introduction. In particular we have (4, 3, 3, 3, 3)
≺∞L (7, 1, 2, 3, 1) and (10, 1, 2, 2, 1) ≺∞L (9, 4, 4, 2, 4) as de-
sired in Examples 1 and 2, which outperforms the possibili-
ties of min-sum and min-max criteria.

3.2 Main Properties of L∞-dominance
We first exhibit two important propositions concerning
W(x), the main properties satisfied by -∞L will then derive
immediately.

Proposition 2. W(x) can be expressed as a linear com-
bination of the components of L(x) using only strictly posi-
tive coefficients. We have:
W(x) =

∑n−1
k=1 (wk − wk+1)Lk(x) + wnLn(x) = w′.L(x)

with w′ = (w1 − w2, w2 − w3, . . . , wn−1 − wn, wn).

Proof. Remarking that x(1) = L1(x) and x(k) = Lk(x)−
Lk−1(x) for k = 2, ..., n., it is sufficient to make the substi-
tution to get the desired linear combination with weights
w′k = wk − wk+1 > 0 for k < n and w′n = wn > 0.

Proposition 3. W is a Schur convex function.

Proof. We have to prove that x -L y ⇒W(x) ≤ W(y).
If x -L y then by definition we have L(x) -P L(y). Hence,
considering the positive weighting vector w′ used in the proof
of Proposition 2, we have w′k.Lk(x) ≤ w′k.Lk(y) for k =
1, ..., n. After summing these n equalities, we get the result
using proposition 2.

This shows that -∞L is based on a Schur convex function,
like S-Gini indices and Yaari’s model introduced in Exam-
ple 3. As recalled before, Schur convex functions are known
as convenient tools to measure inequalities in majorization
theory (see [10]). We present now five properties satisfied
by -∞L which are consequences of Proposition 3. Property
P1 shows that all vectors having the same Lorenz vector are
treated equivalently:

P1: Neutrality. For all x, y in X, L(x) = L(y)⇒ x ∼∞L y.

Property P2 makes explicit the fact that ≺∞L is a refinement
of Lorenz-dominance.

P2: Strict L-Monotonicity. x ≺L y ⇒ x ≺∞L y.

Then we introduce 3 axioms that better explain how -∞L
works with Lorenz vectors.

P3: Complete weak-order. -∞L is reflexive, transitive
and complete.

P4 Continuity. Let x, y, z be 3 cost-vectors such that
x ≺∞L y ≺∞L z. There exists α, β ∈]0, 1[ such that:

αx+ (1− α)z ≺∞L y ≺∞L βx+ (1− β)z.

Proof. We have indeed x ≺∞L y ≺∞L z ⇒ W(x) <
W(y) < W(z). Whenever α → 1 then the sequence of
vectors of general term αx + (1 − α)z tends to x and, by
continuity of W, W(αx + (1 − α)z) → W(x). Hence for α
sufficiently close to 1, W(αx+ (1− α)z) is sufficiently close
to W(x) to be inferior to W(y). Hence αx+ (1−α)z ≺∞L y.
We deliberately omit the other part of the proof that works
similarly with β → 0.

The last property is a restriction to comonotonic vectors
of the so-called independence axiom proposed by Von Neu-
mann and Morgenstern [17] in the framework of utility the-
ory. Comonotonicity of vectors is defined as follows:

Definition 6. Two cost vectors x and y are said to be
comonotonic if xi > xj and yi < yj for no i, j ∈ {1, . . . , n}.

Two solutions having comonotonic cost vectors satisfy the
agents in the same order. It is useful to remark that, for
any pair (x, y) of comonotonic vectors, there exists a per-
mutation π of {1, . . . ,m} such that xπ(1) ≥ xπ(2) ≥ . . . ≥
xπ(m) and yπ(1) ≥ yπ(2) ≥ . . . ≥ yπ(m). Consequently,
W(αx + (1 − α)y) = αW(x) + (1 − α)W(y). We can now
establish our last property:

P5 Comonotonic Independence. Let x, y, z 3 comono-
tonic cost vectors. Then, for all α ∈]0, 1[:

x ≺∞L y =⇒ αx+ (1− α)z ≺∞L αy + (1− α)z.

Proof. We have x ≺∞L y ⇒ W(x) < W(y). Hence
W(αx) < W(αy) and W(αx) +W((1 − α)z) < W(αy) +
W((1−α)z). Since x and z are comonotonic we haveW(αx)+
W((1 − α)z) = W(αx + (1 − α)z). Moreover, y and z are
comonotonic; hence we haveW(αy)+W((1−α)z) =W(αy+
(1−α)z). Finally we getW(αx+(1−α)z) <W(αy+(1−α)z)
and therefore αx+ (1− α)z ≺∞L αy + (1− α)z.

Note that the restriction to comonotonic vectors is nec-
essary within an independence axiom used for the measure-
ment of inequalities [18]. If we forget it in the premisses
of P5, we obtain a property which is incompatible with the
Strict L-monotonicity axiom, as shown by the following:

Example 4. Let us consider x = (24, 24), y = (22, 26)
and z = (26, 22) which are not comonotonic. Due to Strict
L-monotonicity x ≺∞L y. Hence, usual independence would
imply (25, 23) = 1

2
x + 1

2
z ≺∞L 1

2
y + 1

2
z = (24, 24) which is

in contradiction with (24, 24) ≺L (25, 23).

The above properties exhibit nice features of L∞-dominance
and underline some relationships with Yaari’s model intro-
duced in Example 3. This is natural because all these models
are based on OWA operators with decreasing weights.

We have shown that fair optimization in multiagent prob-
lems can reasonably be formulated as minimizing function
W(x) over feasible cost vectors. However W(x) is not a lin-
ear function since, for non-comonotonic vectors x, y, W(x+
y) 6= W(x) +W(y) in general. Hence minimizing W(x) re-
quires non-linear optimization. The next section is devoted
to this point in the context of many to many multiagent
assignment problems.

4. SOLVING MULTIAGENT ASSIGMENT
PROBLEMS

The general many to many multiagent assignment prob-
lem we are considering can be stated as follows: we want to
assign m items to n agents. The number of items assigned
to agent i is restricted to interval [li, ui], i = 1, . . . , n. Item
j must be assigned to a number of agents restricted to the
interval [l′j , u

′
j ], j = 1, . . . ,m. A n×m matrix gives the cost

cij of assigning item j to agent i.
This general problem occurs in many contexts such as

paper assignment problems, social meeting on the web, re-
source allocation, transportation problems. The possible so-
lutions are characterized by a n×m matrix of booleans zij
representing the possibility of assigning item j to individual
i. Hence the problem can be formalized as a multiobjective
0-1 linear optimization problem:



Min xi =

m∑
j=1

cijzij , i = 1, . . . , n

s.t.


l′j ≤

∑n
i=1 zij ≤ u

′
j j = 1, . . . ,m

li ≤
∑m
j=1 zij ≤ ui i = 1, . . . , n

zij ∈ {0, 1} ∀i,∀j

This general multiobjective programm fits to many dif-
ferent situations involving multiple agents. For example,
in fair allocation of indivisible goods, we set l′j = u′j = 1,
j = 1, . . . ,m. This is the case when we have to distribute
presents to kids as in the Santa Claus problem [1], or in some
auctions problems. Alternatively, the multiobjective prob-
lem can easily model a conference paper assignment prob-
lem. In this case l′j = u′j = 3, j = 1, . . . ,m (a paper must
be reviewed 3 PC members) and ui (resp. li) represent the
maximal (resp. minimal) number of papers we want to as-
sign to reviewer i. In this case, xi represents the overall
charge or dissatisfaction of agent i.

In such multiagent combinatorial problems, the number
of Pareto-optimal solutions and L-non-dominated solutions
can be large, as illustrated in the following example.

Example 5. Consider a particular instance of the above
problem with m items to be assigned to 2 agents (n = 2).
Assume that l1 = l2 = 0, u1 = u2 = n, l′j = u′j = 1, j =

1, . . . ,m with costs c1j = 2j and c2j = 2j−1, j = 1 . . .m− 1,
c1m = 4m, c2m = 2m + 1. This gives 2m distinct feasible as-
signments. The half of them assigns item m to agent 1 which
is prohibitive. All of them are L-dominated. The other half
produces cost vectors {(2k, 3×2m−1−k), k ∈ {0, . . . , 2m−1−
1}. Note that 3 × 2m−1 − k > 2k. Consequently, the asso-
ciate Lorenz vectors are {(3× 2m−1 − k, 3× 2m−1 + k), k ∈
{0, . . . , 2m−1 − 1}}. No P-dominance holds between these
Lorenz vectors because their sum of components is constant.
Hence we have 2m−1 L-non-dominated solutions.

In this family of instances, the number of L-non-dominated
feasible cost vectors grows exponentially with m. Even if we
want only one feasible solution for each distinct cost vector,
the size of the output set remains exponential in m. Clearly,
L∞-dominance can help to reduce the set of optimal solu-
tions.

4.1 Fair Multiagent Optimization
Using the result established in Theorem 2, the search of

an optimal many to many assignment problem with respect
to L∞-dominance can be formulated as the following 0-1
non-linear optimization problem (Π):

Min W(x) =

n∑
k=1

sin

(
(n+ 1− k)π

2n+ 1

)
x(k) (2)

(Π) s.t.


xi =

∑m
j=1 cijzij i = 1, . . . , n

l′j ≤
∑n
i=1 zij ≤ u

′
j j = 1, . . . ,m

li ≤
∑m
j=1 zij ≤ ui i = 1, . . . , n

zij ∈ {0, 1} ∀i,∀j

(3)

Proposition 4. The problem Pα consisting in deciding
whether there exists an assignment with cost W(x) ≤ α is
an NP-complete decision problem for any fixed positive α.

Proof. Pα is clearly in NP. To establish NP-completeness,
we reduce the NP-complete Partition Problem to our prob-
lem. The Partition Problem is stated as follows:

Instance: finite set A = {a1, . . . , am} of items and a size
s(a) ∈ N for each a ∈ A.
Question: is it possible to partition A into two sets of ob-
jects of equal weights?
From an instance of Partition Problem, we construct in poly-
nomial time an instance of Pα with n = 2, l1 = l2 = 0, u1 =
u2 = m, l′j = u′j = 1, and c1j = c2j = s(aj), j = 1, . . . ,m.
Moreover we set α = (w1 + w2)β with β =

∑
a∈A s(a)/2.

Hence, the answer to Pα is YES if and only if the answer to
the partition problem is YES. Indeed, if there is a solution to
the partition problem, then there exists an assignment with
cost (β, β) and W(β, β) = α. Moreover, if the answer to the
partition problem is NO, then any partition of A into two
subsets is unfair and the corresponding assignment leads to
a cost vector of type (β−ε, β+ε), ε ∈ (0, β]. Since (β, β) ≺L
(β − ε, β + ε) we have W(β − ε, β + ε) > W(β, β) = α. So
there is no assignment such that W(x) = α; the answer to
Pα is NO.

4.2 Linearization of the problem
Thanks to Proposition 2, Π rewrites:

(Π′) Min W(x) =

n∑
k=1

w′kLk(x) s.t. (3)

with w′ = (w1−w2, w2−w3, . . . , wn−1−wn, wn). Following
an idea introduced in [13], we express the kth component
Lk(x) of the Lorenz vector L(x) as the solution of the fol-
lowing linear program:

Max
( n∑
i=1

αikxi
)

s.t.

{ ∑n
i=1 αik = k

0 ≤ αik ≤ 1 i = 1 . . . n

Its optimal value is clearly the sum of the k greatest com-
ponents of x, that is Lk(x). This is also the optimal value
of the dual problem:

Min
(
k rk +

n∑
i=1

bik
)

s.t.

{
rk + bik ≥ xi i = 1 . . . n
bik ≥ 0 i = 1 . . . n

We can therefore combine the linear program above with
Π′ (since both are in minimization and w′ > 0) and rewrite
our problem Π as the following mixed integer linear program:

Min

n∑
k=1

w′k

(
k × rk +

n∑
i=1

bik

)

(Γ) s.t.


l′j ≤

∑n
i=1 zij ≤ u

′
j j = 1, . . . ,m

li ≤
∑m
j=1 zij ≤ ui i = 1, . . . , n

rk + bik ≥
∑m
j=1 cijzij ∀i, k = 1, . . . , n

bik ≥ 0 ∀i,∀k
zij ∈ {0, 1} ∀i,∀j

Γ has 2(n2+m+n) constraints, nm 0-1 variables, and n2+n
continuous variables.

4.3 Numerical Tests
We present here numerical tests2 performed on random

instances of one-to-one and many-to-many multiagent as-
signment problems. To solve the mixed integer linear pro-
gram Γ, we used ILOG CPLEX 11.100 on a computer with

2The authors wish to thank Julien Lesca (LIP6-UPMC) for
his participation to numerical tests.



4 Go of memory and an Intel Core 2 Duo 2.66 GHz pro-
cessor. Table 1 (resp. Table 2) gives the results obtained
for the assignment of m objects to n = m agents, with
li = l′i = ui = u′i = 1 and costs randomly generated in
[1, 1000] (resp. [1, 20]). Table 3 is the test on the paper
assignment problem modeled as follows: n = m/4, each re-
viewer receives at most 9 papers (li = 0 and ui = 9), a paper
has to be reviewed by exactly 2 reviewers (l′j = u′j = 2), and
a reviewer expresses his preferences for reviewing a paper
with a number between 0 and 5 (i.e. costs are in [0, 5]). The
computation times expressed in seconds represent average
solution times over 20 random instances of the same size m
(number of objects) with a timeout set to 1000 seconds.

m t

10 .01
20 .09
30 .33
40 1.52
50 5.14
60 16.1
70 34.0
80 81.8
90 136
100 275

m t

100 .93
200 3.65
300 17.4
400 52.8
500 104
600 161
700 390
800 482
900 843
1000 >1000

m t

200 3.51
300 5.63
400 13.9
500 35.7
600 79.4
700 148
800 303
900 478
1000 904
1100 >1000

1. Costs in [1, 1000] 2. Costs in [1, 20] 3. Paper Assignment

So, it is possible to find a fair solution to the paper as-
signment problem with realistic parameters for a standard
conference within a reasonable time. The approach pre-
sented here remains valid for finding fair assignments by
optimization of S-Gini indices and other instances of the
Yaari’s model. Indeed, as ordered weighted averages, such
indices can be linearized similarly asW. We have performed
tests showing that solution times using such criteria are in
the same order of magnitude.

5. CONCLUSION
We have investigated the notion of infinite order Lorenz

dominance and its use in fair multiagent assignment prob-
lems. The representation result established in Section 3
makes it possible to formulate the search of non-dominated
solutions as a single-objective optimization problem. We
have used this result to solve assignment problems and shown
the effectiveness of the approach on non-trivial combinato-
rial problems involving a significant number agents.

The representation of L∞-dominance by an OWA opera-
tor with strictly positive and decreasing weights is easily in-
terpretable: W is an intermediate between the Max operator
generally used to model egalitarism and weighted averages
used to model utilitarism. Although the former focuses on
the least satisfied agent, the latter is fully compensatory and
does not provide any control on fairness in the distribution
of costs. Thus,W provides a soft compromise between these
two extreme attitudes, putting more weight on least satisfied
agents while keeping some compensation possibilities.

Our results can be extended to the case of weighted agents
(which occurs, for example, in resource allocation problems,
where agents can have exogenous rights represented by indi-
vidual weights). It is possible to show that the weighted
extension of L-dominance converges by iteration towards
a weighted extension of OWA. The associate optimization
problem can be solved efficiently by slightly modifying the
mixed integer linear program Γ.
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